Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182568

ABSTRACT

A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin-avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations.


Subject(s)
Quartz Crystal Microbalance Techniques , Biosensing Techniques , Gold , Immunoassay , Quartz , Stem Cells
2.
Analyst ; 139(5): 1148-54, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24419052

ABSTRACT

Flow cytometry is to date the only commercially viable technique for sex preselection of mammalian spermatozoa, measuring the different DNA content in X- and Y-chromosome bearing spermatozoa. Here we present experimental evidence of a measurable difference between bovine spermatozoa bearing X- and Y-chromosomes based on their buoyant mass. Single cells of two populations of flow-cytometrically sorted spermatozoa were analyzed by means of a micromechanical resonator, consisting of a suspended doubly-clamped microcapillary. Spermatozoa buoyant mass is related to the transitory variation in vibration phase lag, caused by the passage through the sensitive area of a single sperm cell suspended in a fluid. Data analysis shows two well-separated distributions and provides evidence of the sensor capabilities to detect the buoyant mass of single cells with such accuracy to distinguish X- and Y-chromosome bearing spermatozoa. These preliminary results suggest the possibility to develop an intriguing technique alternative to flow cytometry in the field of sperm sorting.


Subject(s)
Microfluidic Analytical Techniques/methods , Sex Preselection/methods , Spermatozoa/physiology , X Chromosome/physiology , Y Chromosome/physiology , Animals , Biomechanical Phenomena/physiology , Cattle , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...